Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Trace Elem Med Biol ; 75: 127089, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2086504

ABSTRACT

BACKGROUND: The ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3's ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established. METHODS: In this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells. CONCLUSION: In silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection. DATA AVAILABILITY: The data used to support the findings of this research are included within the article and are labeled with references.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ubiquitin-Protein Ligases , Ubiquitin , Zinc , Tripartite Motif Proteins , Intracellular Signaling Peptides and Proteins
2.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS) ; 2022.
Article in English | EuropePMC | ID: covidwho-2045180

ABSTRACT

Background The ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3’s ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established. Methods In this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells. Conclusion In silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection. Data Availability The data used to support the findings of this research are included within the article and are labeled with references. Graphical

3.
J Inorg Biochem ; 219: 111423, 2021 06.
Article in English | MEDLINE | ID: covidwho-1129080

ABSTRACT

The recent pandemic caused by the novel coronavirus resulted in the greatest global health crisis since the Spanish flu pandemic of 1918. There is limited knowledge of whether SARS-CoV-2 is physically associated with human metalloproteins. Recently, high-confidence, experimentally supported protein-protein interactions between SARS-CoV-2 and human proteins were reported. In this work, 58 metalloproteins among these human targets have been identified by a structure-based approach. This study reveals that most human metalloproteins interact with the recently discovered SARS-CoV-2 orf8 protein, whose antibodies are one of the principal markers of SARS-CoV-2 infections. Furthermore, this work provides sufficient evidence to conclude that Zn2+ plays an important role in the interplay between the novel coronavirus and humans. First, the content of Zn-binding proteins in the involved human metalloproteome is significantly higher than that of the other metal ions. Second, a molecular linkage between the identified human Zn-binding proteome with underlying medical conditions, that might increase the risk of severe illness from the SARS-CoV-2 virus, has been found. Likely perturbations of host cellular metal homeostasis by SARS-CoV-2 infection are highlighted.


Subject(s)
Host-Pathogen Interactions/physiology , Metalloproteins/metabolism , Nervous System Diseases/genetics , SARS-CoV-2/pathogenicity , Viral Proteins/metabolism , COVID-19/metabolism , Carrier Proteins/metabolism , Humans , Metalloproteins/genetics , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL